首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under Statically Stable Conditions: Experimental and Numerical Aspects
Authors:AA Aliabadi  RM Staebler  J de Grandpré  A Zadra  PA Vaillancourt
Institution:1. Atmospheric Processes Research Section, Environment Canada, Toronto, Ontario, Canada;2. Atmospheric Modelling and Integration Research Section, Environment Canada, Dorval, Quebec, Canada;3. Atmospheric Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada
Abstract:The atmospheric boundary layer mixing height (MH) is an important bulk parameter in air quality (AQ) modelling. Formulating this parameter under statically stable conditions, such as in the Arctic, has historically been difficult. In an effort to improve AQ modelling capacity in North America, MH is studied in two geographically distinct areas: the Arctic (Barrow, Alaska) and the southern Great Plains (Lamont, Oklahoma). Observational data from the Atmospheric Radiation Measurement program, Climate Research Facility and numerical weather forecasting data from Environment Canada's Regional Global Environmental Multiscale (GEM15) model have been used in order to examine the suitability of available parameterizations for MH under statically stable conditions and also to compare the level of agreement between observed and modelled MH. The analysis period is 1 October 2011 to 1 October 2012. The observations alone suggest that profile methods are preferred over surface methods in defining MH under statically stable conditions. Surface methods exhibit poorer comparison statistics with observations than profile methods. In addition, the fitted constants for surface methods are site-dependent, precluding their applicability for modelling under general conditions. The comparison of observations and GEM15 MH suggests that although the agreement is acceptable in Lamont, the default model surface method contributes to a consistent overprediction of MH in Barrow in all seasons. An alternative profile method for MH is suggested based on the bulk Richardson number. This method is shown to reduce the model bias in Barrow by a factor of two without affecting model performance in Lamont.
Keywords:Arctic  boundary layer  mixing height  parameterization  profile methods  static stability  mid-latitude  surface methods
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号