首页 | 本学科首页   官方微博 | 高级检索  
     检索      


First account of apochlorotic diatoms from intertidal sand of a south Florida beach
Authors:Michele V Blackburn  Fiona Hannah  Andrew Rogerson  
Institution:aOceanographic Center, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL 33004, USA;bMarine Biological Station Millport, University of London, Isle of Cumbrae KA28 0EG, Scotland, UK
Abstract:During the period January to December 2004, monthly intertidal sand samples were collected from John U. Lloyd State Park beach, Florida. This study is the first to report on spatial and temporal distributions of heterotrophic (apochlorotic) diatoms in a sub-tropical beach, or indeed any sandy beach. Two non-pigmented, apochlorotic diatom morphotypes (strains III and IV) were consistently isolated from two intertidal beach sites and neither conformed to the morphologies of described species. Apochlorotic diatoms were found throughout the year and formed significant peaks in April, attaining total diatom counts of 71.1 and 94.9 cells g−1 wet sand, for the upper tidal zone and lower tidal zone, respectively. Valve morphology is described in detail for the two diatom morphotypes isolated from the beach sites (strains III and IV). Growth responses to changes in salinity (reflecting those of the intertidal zone) were examined in the laboratory for these diatoms. Both morphotypes were euryhaline, tolerating salinities between 10 and 50, and maximum growth rates were achieved at salinities between 20 and 40. Diatoms grew equally well whether grown in the light or the dark and showed no evidence of pigments when viewed by epifluorescence microscopy. The ability of diatoms to burrow into agar and carrageenan at different concentrations was tested. Both morphotypes were observed to develop burrows through non-nutrient agar up to twice the standard concentration (30 g agar l−1). The ease with which these heterotrophic diatoms formed burrows suggests that they were digesting these complex carbohydrates (i.e. phycocolloids) as a nutrient source. Strain IV, however, failed to burrow in a different phycocolloid, carrageenan. Similar degradative actions in the field might have implications for the breakdown of recalcitrant materials or allow diatoms to effectively compete with bacteria for carbon and nutrients.
Keywords:colorless diatoms  growth  heterotrophic diatoms  intertidal  phycocolloid degradation  salinity tolerance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号