首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemical and physical characterization of suspended particles and colloids in waters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil
Authors:N Miekeley  H Coutinho de Jesus  CL Porto da Silveira  C Degueldre
Abstract:Data are presented on suspended particles and colloids in groundwaters from the Osamu Utsumi mine and the Morro do Ferro analogue study sites. Cross-flow ultrafiltration with membranes of different pore sizes (450 nm to 1.5 nm) was used to prepare colloid concentrates and ultrafiltrates for analyses of major and trace elements and U- and Th-isotopic compositions. Additional characterization of colloidal and particulate material was performed by ESCA, SEM and X-ray diffraction. The results indicate the presence of low concentrations of colloids in these waters (typically < 500 μg/l), composed mainly of iron/organic species. Minor portions of uranium and other trace elements, but significant fractions of the total concentrations of Th and REE in prefiltered waters (< 450 nm) were associated with these colloids.Suspended particles (> 450 nm), also composed mainly of hydrous ferric oxides and humic-like compounds, show the same trend as the colloids with respect to U, Th and REE associations, but elemental concentrations were typically higher by a factor of 1,000 or more. In waters of low pH and with high sulphate content, these associations are considerably lower. Due to the low concentrations of suspended particles in groundwaters from the Osamu Utsumi uranium mine (typically <0.5 mg/l), these particles carry only a minor fraction of U and the REE (<10% of the total concentrations in unfiltered groundwaters), but a significant, usually predominant fraction of Th (30–70%). The suspended particle load in groundwaters from the Morro do Ferro environment is typically higher than in those from the mine by a factor of 5 to 10. This suggests that U, Th and the REE could be transported predominantly by particulate matter. However, these particles and colloids seem to have a low capacity for migration.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号