首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soil CO2 efflux, carbon dynamics, and change in thermal conditions from contrasting clear-cut sites during natural restoration and uncut larch forests in northeastern China
Authors:Yuan-Gang Zu  Wen-Jie Wang  Hui-Mei Wang  Wei Liu  Song Cui  Takayoshi Koike
Institution:1. Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, 150040, People’s Republic of China
2. Hokkaido University Forests, FSC, Hokkaido University, Sapporo, 060-0809, Japan
Abstract:With the implementation of the Chinese Natural Forest Conservation Program (NFCP) in 1998, over millions of hectares of forest in northeastern China have been protected through natural restoration (closure of hills). The impact of this program on the carbon budget of soil has not been evaluated until now. This paper presents results from a 6-year study of total CO2 efflux from both soil and litter (R total), CO2 flux from soil (R soil), soil organic matter (SOM), soil microbe density, and litter input and root biomass at an uncut larch (Larix gmelinii) forest and at a natural restoration site. The natural restoration area is a clear-cut site that was formerly part of a continuous portion of the uncut larch forest. Our objectives were to: (1) quantify the magnitude of CO2 efflux from typical sites in northeastern China; (2) explore the changes in thermal conditions, SOM, and annual CO2 flux during the 6-year natural restoration, and (3) evaluate the impact of NFCP on soil carbon processes. The annual R soil at the clear-cut site (58.6–68.2 mol m???2 year???1) was 113.6–228.4% (mean 141.5%) higher than that at the uncut larch site (29.6–58.4 mol m???2 year???1). At the same time, annual CO2 from litter at the clear-cut site (2.0–14.2 mol m???2 year???1) was only 23.5–84.5% (mean 52.5%) of that at the uncut larch site (5.4–16.8 mol m???2 year???1). SOM at the surface layer of the clear-cut site was 75% of that at the uncut larch site, but the soil microbial biomass (carbon) at the clear-cut site was much higher than that at the larch site (p?<?0.05). The percentage of bacteria, fungi and actinomycetes also were largely different between both sites. Natural restoration at the clear-cut site strongly affected thermal conditions. Although the soil temperature (T soil) and effective accumulated $T_{\rm soil} > 0^{\circ}$ C at the clear-cut site was much higher, the temperature sensitivity (Q 10) was much lower than that at the uncut larch site, and their differences decreased linearly from 2001 to 2006 (p?<?0.05). Moreover, Q 10 at the clear-cut site significantly increased with the progress of natural restoration, which diminished the Q 10 difference between the two sites (slope?=???0.2792, r 2?=?0.4744, p?<?0.05). These data imply that the NFCP natural restoration process has positively recovered the thermal condition of the clear-cut site to the level of uncut larch forest during the 6-year period. However, linear regression analysis showed that the 6-year natural restoration only slightly affected the annual soil CO2 efflux and SOM at both sites, and also did not diminish the differences between the two sites (p?>?0.10), indicating that a much longer time is necessary to restore the soil carbon in the clear-cut site.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号