首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Analysis of Thermally-Related Surface Rainfall Budgets Associated with Convective and Stratiform Rainfall
Authors:ZHOU Yushu and Xiaofan LI
Institution:Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,NOAA/NESDIS/Center for Satellite Applications and Research, Camp Springs, Maryland
Abstract:Both water vapor and heat processes play key roles in producing surface rainfall. While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been investigated in previous studies, the thermal effects on rainfall are analyzed in this study using a series of two-dimensional equilibrium cloud-resolving model experiments forced by zonally-uniform, constant, large-scale zonal wind and zero large-scale vertical velocity. The analysis of thermally-related surface rainfall budget reveals that the model domain mean surface rain rate is primarily associated with the mean infrared cooling rate. Convective rainfall and transport of hydrometeor concentration from convective regions to raining stratiform regions corresponds to the heat divergence over convective regions, whereas stratiform rainfall corresponds to the transport of hydrometeor concentration from convective regions and heat divergence over raining stratiform regions. The heat divergence over convective regions is mainly balanced by the heat convergence over rainfall-free regions, which is, in turn, offset by the radiative cooling over rainfall-free regions. The sensitivity experiments of rainfall to the effects of sea surface temperature and cloud radiative and microphysical processes show that the sea surface temperature and cloud processes affect convective rainfall through the changes in infrared cooling rate over rainfall-free regions and transport rate of heat from convective regions to rainfall-free regions.
Keywords:surface rainfall  infrared cooling  heat divergence  cloud-resolving model simulation
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号