首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predictive uncertainty of a nearshore bed evolution model
Institution:1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, 97331, USA;2. Washington State Department of Ecology, Coastal Monitoring & Analysis Program, Olympia, WA, 98504, USA;3. U.S. Geological Survey, Pacific Coastal and Marine Science Center, 400 Natural Bridges Drive, Santa Cruz, CA 95060, USA
Abstract:Predictions of nearshore depth evolution using process-based numerical simulation models contain inherent uncertainties owing to model structural deficiencies, measurement errors, and parameter uncertainty. This paper quantifies the parameter-induced predictive uncertainty of the cross-shore depth evolution model Unibest-TC by applying the Bayesian Generalised Likelihood Uncertainty Estimation methodology to modelling depth evolution at Egmond aan Zee (Netherlands). This methodology works with multiple sets of parameter values sampled uniformly in feasible parameter space and assigns a likelihood value to each parameter set. Acceptable simulations (i.e., based on parameter sets with a nonzero likelihood) were found for a wide range of parameter values owing to parameter interdependence and insensitivity. The 95% uncertainty prediction interval of bed levels after the 33 days prediction period was largest (0.5–1 m) near the sandbar crests that characterize the Egmond depth profile, reducing to near-zero values in the sandbar troughs and the offshore area. The prediction interval built up during storms (when sediment transport rates are largest) and remained the same or even reduced slightly during less-energetic conditions. The prediction uncertainty ranges bracket the observations near the inner-bar crest, its seaward flank, and at the seaward flank of the outer bar, suggesting that elsewhere model structural errors (and, potentially, measurement errors) dominate over parameter errors. The interdependence and the non-Gaussian marginal posterior distribution functions of the free model parameters cast doubt on the ability of commonly applied multivariate normal distribution functions to estimate parameter uncertainty.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号