首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of soil to structure stiffness on the accuracy of the pushover method for underground structures
Institution:1. Wuxi Institute of Technology, Wuxi, 214021, China;2. Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing, 210009, China
Abstract:The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process. The method has been widely used in seismic design and other related scientific research; however, the influence of different soil-structure flexibility ratios on the accuracy of this method is still not well understood. In this study, we select the cross-section structures beneath the Daikai subway station as the research object and establish 12 finite element analysis models with different soil-structure flexibility ratios using ABAQUS. All models are computed by the dynamic time-history method or the pushover method. Furthermore, the dynamic time-history solution result is taken as the standard solution, and the precision and application of the pushover analysis method are discussed based on the parameters of peak interlayer displacement and peak internal force of the middle column section. The results show that the soil-structure flexibility ratio has a significant influence on the calculation accuracy of the pushover method, and the calculation accuracy of this method is the most ideal when the soil-structure flexibility is equal to 1. The research results can provide significant references for the seismic design of underground structures or the improvement of simplified seismic analysis methods.
Keywords:Underground structure  Pushover  Soil to structure flexibility  Accuracy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号