首页 | 本学科首页   官方微博 | 高级检索  
     检索      


FE-studies on the influence of initial void ratio,pressure level and mean grain diameter on shear localization
Authors:Jacek Tejchman  Ivo Herle  Jimmy Wehr
Abstract:The paper is concerned with shear localization in the form of a spontaneous shear zone inside a granular material during a plane strain compression test. The influence of an initial void ratio, pressure and a mean grain diameter on the thickness of a shear zone is investigated. A plane strain compression test with dry sand is numerically modelled with a finite element method taking into account a polar hypoplastic constitutive relation which was laid down within a polar (Cosserat) continuum. The relation was obtained through an extension of a non-polar hypoplastic constitutive law according to Gudehus and Bauer by polar quantities: rotations, curvatures, couple stresses and a characteristic length. It can reproduce the essential features of granular bodies during shear localization. The material constants can be easily calibrated. The FE-calculations demonstrate an increase in the thickness of the shear zone with increasing initial void ratio, pressure level and mean grain diameter. Polar effects manifested by the appearance of grain rotations and couple stresses are only significant in the shear zone. A comparison between numerical calculations and experimental results shows a satisfying agreement. Copyright © 1999 John Wiley & Sons, Ltd.
Keywords:constitutive equation  granular material  finite element method  hypoplasticity  localization  polar continuum  shear zone
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号