首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Origin of Deccan Trap lavas: evidence from combined trace element and Sr-, Nd- and Pb-isotope studies
Authors:Peter Lightfoot  Chris Hawkesworth
Abstract:Geochemical and isotope results are presented from a new study of the most southern basalts in the Deccan Trap, India. Three chemical formations are recognised, two of which can be correlated with the established stratigraphy in Mahabaleshwar and imply a regional southerly dip of 0.06° over a distance of 250 km. In detail Sr-isotope variations within the Ambenali and Mahabaleshwar Formations can be shown to reflect three distinct end-members which provide new constraints for petrogenetic models. Pb-isotope data for selected basalts exhibit a wide range with206Pb/204Pb= 16.87–22.45, and a linear correlation on a Pb—Pb diagram. The least contaminated Ambenali basalts plot within the Pb-array, and interaction with mantle lithosphere involves a shift to less radiogenic Pb whereas contamination with crust is characterised by more radiogenic Pb. Unlike the Karoo and Parana continental flood basalt provinces only four flow units within the southern Deccan appear to contain a significant contribution from mantle lithosphere. The Mahabaleshwar and Ambenali Formation basalts exhibit a striking negative Pb—Sr isotope trend which is presently regarded as one of the features of interaction with shallow level lithospheric mantle. It further suggests that basalts from the Walvis Ridge, Kerguelen and Ninetyeast ridge all remobilised such shallow level material, and that the Deccan basalts which were not affected by crustal contamination reflect interaction between asthenospheric material similar to T-type MORB, but related to the Reunion hotspot, and continental mantle lithosphere of the Indian plate.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号