首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical,mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer
Authors:KM Campbell  RK Kukkadapu  NP Qafoku  AD Peacock  E Lesher  KH Williams  JR Bargar  MJ Wilkins  L Figueroa  J Ranville  JA Davis  PE Long
Institution:1. U.S. Geological Survey, Boulder, CO, United States;2. U.S. Geological Survey, Menlo Park, CA, United States;3. Pacific Northwest National Laboratory, Richland, WA, United States;4. Haley and Aldrich, Oak Ridge, TN, United States;5. Colorado School of Mines, Golden, CO, United States;6. Lawrence Berkeley National Laboratory, Berkeley, CA, United States;g Stanford Synchrotron Radiation Laboratory, Menlo Park, CA, United States;h University of California, Berkeley, CA, United States
Abstract:Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号