首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The complex, variable near-infrared extinction towards the Nuclear Bulge
Authors:Andrew J Gosling  Reba M Bandyopadhyay  Katherine M Blundell
Institution:Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH;Astronomy Division, Department of Physical Sciences, P.O. Box 3000, 90014 University of Oulu, Finland;Department of Astronomy, University of Florida, Gainesville, FL 32611, USA
Abstract:Using deep J -, H - and K S-band observations, we have studied the near-infrared extinction of the Nuclear Bulge, and find significant, complex variations on small physical scales. We have applied a new variable near-infrared colour excess (V-NICE) method to measure the extinction; this method allows for variation in both the extinction law parameter α and the degree of absolute extinction on very small physical scales. We see significant variation in both these parameters on scales of 5 arcsec. In our observed fields, representing a random sample of sight lines to the Nuclear Bulge, we measure α to be  2.64 ± 0.52  , compared to the canonical 'universal' value of 2. Our measured levels of     are similar to previously measured results     ; however, the steeper extinction law results in higher values for   AJ (4.5 ≤ AJ ≤ 10  ) and   AH (1.5 ≤ AH ≤ 6.5  ). Only when the extinction law is allowed to vary on the smallest scales can we recover self-consistent measures of the absolute extinction at each wavelength, allowing accurate reddening corrections for field star photometry in the Nuclear Bulge. The steeper extinction law slope also suggests that previous conversions of near-infrared extinction to   AV   may need to be reconsidered. Finally, we find that the measured values of extinction are significantly dependent on the filter transmission functions of the instrument used to obtain the data. This effect must be taken into account when combining or comparing data from different instruments.
Keywords:dust  extinction  ISM: structure  Galaxy: centre  infrared: stars
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号