首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bank filtration in the sandy littoral zone of Lake Tegel (Berlin): Structure and dynamics of the biological active filter zone and clogging processes
Authors:Anja Hoffmann  Günter Gunkel
Institution:Berlin University of Technology, Department of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
Abstract:This study focused on clogging processes and on the benthic microalgal and meiofaunal assemblage in the sandy littoral zone of Lake Tegel, which are significantly involved in bank filtration, in a long-term. Our approach combined field studies and “in situ” experiments to highlight the structure of the biological active filter zone as well as the mechanisms and effects of clogging in the interstices that influence the infiltration process.Campaigns to measure “in situ” infiltration rates and hydraulic potential were conducted monthly from March 2004 to April 2005. Meiofaunal abundances and fine particulate organic matter (FPOM) were determined every 6 weeks in freeze cores down to depths of 50 cm. In parallel, concentrations of carbon, nitrogen and chlorophyll a were measured in samples of unfrozen sediment cores, that were divided in 1-cm steps down to depths of ≥10 cm. Similar sediment profiles were generated for analysis of colloidal carbohydrates, extracellular polymeric substances (EPS) and proteins between December 2005 and June 2006. Electron microscopy was used to visualize biofilm structure. Long-term experiments with natural FPOM and melamine resin particles as fluorescent tracers were performed to study “in situ” particle retention and transport, respectively. Additionally seston input was quantified during a 1-week period in April 2005.Infiltration rates showed a high temporal and spatial variability, but were not correlated with hydraulic conductivities as hydraulic gradients changed a lot. Likewise a correlation between infiltration rates and hydraulic potentials was not observed, indicating clogging processes. These are triggered to a high extend by biological compounds. In addition, seston input and intermittent gas intrusion are considered to reduce the hydraulic conductivity considerably. No significant “in situ” transport of inert natural fluorescent tracers was observed. However, a complete and permanent clogging of the sandy sediment does not occur, and daily infiltration rates of 0.7-27 L m−2 h−1 (mean 9 L m−2 h−1) guarantee a sufficient water supply by bank filtration for decades.
Keywords:Bank filtration  Biofilms  Clogging  Extracellular polymeric substances (EPS)  Particle retention
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号