首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Alteration processes of cement induced by CO2-saturated water and its effect on physical properties: Experimental and geochemical modeling study
Institution:1. Biomedical Department of Internal and Specialistic Medicine (DIBIMIS), Section of Endocrinology, Diabetology and Metabolism, University of Palermo, Palermo, Italy;2. Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, Palermo, Italy
Abstract:The objective of this study is to understand cement alteration processes with the evolution of porosity and hardness under geologic CO2 storage conditions. For this study, the cylindrical cement cores (class G) were reacted with CO2–saturated water in a vessel (40 °C and 8 MPa) for 10 and 100 days. After the experiment, the CO2 concentration and Vickers hardness were measured in the hydrated cement core to estimate the carbonation depth and to identify the change in hardness, respectively. Diffusive-reactive transport modeling was also performed to trace the alteration processes and subsequent porosity changes. The results show that cement alteration mainly results from carbonation. With alteration processes, four different reaction zones are developed: degradation zone, carbonation zone, portlandite depletion zone, and unreacted zone. In the degradation zone, the re-dissolution of calcite formed in the carbonation zone leads to the increase of porosity. In contrast, the carbonation zone is characterized by calcite formation resulting mainly from the dissolution of portlandite. The carbonation zone acts as a barrier to CO2 intrusion by consuming dissolved CO2. Especially in this zone, although the porosity decreases, the Vickers hardness increases. Our results show that cement alteration processes can affect the physical and hydrological properties of the hydrated cement under CO2-saturated conditions. Further long-term observation is required to confirm our results under in-situ fluid chemistry of a CO2 storage reservoir. Nonetheless, this study would be helpful to understand alteration processes of wellbore cements under CO2 storage conditions.
Keywords:Cement alteration processes  Carbonation  Porosity  Hardness  Well integrity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号