首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the penetration of a hot diapir through a strongly temperature-dependent viscosity medium
Authors:Stephen F Daly  Arthur Raefsky
Institution:Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02319, USA;Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
Abstract:Summary. The ascent of a hot spherical body through a fluid with a strongly temperature-dependent viscosity has been studied using an axisymmetric finite element method. Numerical solutions range over Peclet numbers of 10?1– 103 from constant viscosity up to viscosity variations of 105. Both rigid and stress-free boundary conditions were applied at the surface of the sphere. The dependence of drag on viscosity variation was shown to have no dependence on the stress boundary condition except for a Stokes flow scaling factor. A Nusselt number parameterization based on the stress-free constant viscosity functional dependence on the Peclet number scaled by a parameter depending on the viscosity structure fits both stress-free and rigid boundary condition data above viscosity variations of 100. The temperature scale height was determined as a function of sphere radius. For the simple physical model studied in this paper pre-heating is required to reduce the ambient viscosity of the country rock to less than 1022 cm2 s?1 in order for a 10 km diapir to penetrate a distance of several radii.
Keywords:diapir  drag  Nusselt number  temperature-dependent viscosity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号