首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高水力梯度条件下颗粒堆积型多孔介质渗流规律试验研究
引用本文:杨 斌,徐曾和,杨天鸿,杨 鑫,师文豪.高水力梯度条件下颗粒堆积型多孔介质渗流规律试验研究[J].岩土力学,2018,39(11):4017-4024.
作者姓名:杨 斌  徐曾和  杨天鸿  杨 鑫  师文豪
作者单位:1. 东北大学 深部金属矿山安全开采教育部重点实验室,沈阳 辽宁 110819; 2. 东北大学 资源与土木工程学院 岩石破裂与失稳研究所,沈阳 辽宁 110819
基金项目:国家重点基础研究发展计划项目(973计划)(No. 2013CB227902);国家自然科学基金资助项目(No. 51574059)
摘    要:煤矿开采面临的水文地质条件越来越复杂,尤其是遭遇承压含水层的水压力越来越大,突水灾害发生时必然会带来高水力梯度引起的破碎岩体突水通道内高速非线性渗流问题。据此,研制高水力梯度(最大600)条件下堆积型多孔介质中高速非线性渗流试验装置,采用堆积型钢球模拟破碎岩体,对粒径为1、2、3、4、5、6 mm共6种光滑钢球分别开展了一维均质圆柱渗流试验。试验结果表明:对于由1~6 mm钢球堆积而成的孔隙率为0.44~0.45的多孔介质,当水力梯度大于145时,通过分析水力梯度-平均流速(J-v)曲线和水力梯度-雷诺数(J-Re)关系曲线,将流动状态划分为3个模式:线性层流、非线性层流、紊流,并获得了从线性层流过渡到非线性层流的临界流速为0.23~0.78 cm/s、临界水力梯度为3~8;从层流到紊流转捩的临界流速为1.6~4.8 cm/s、临界水力梯度为90~145。从小粒径多孔介质到大粒径多孔介质的渗流过程中,临界流速越来越大,而临界水力梯度逐渐减小。 渗透率与粒径的平方、非达西流影响系数与粒径的倒数均呈线性正相关,非达西流影响系数随着渗透率的增加呈指数减小。该研究对多孔介质非线性渗流的理论研究以及实际工程中高承压含水层突涌水问题有重要借鉴意义。

关 键 词:多孔介质  颗粒粒径  临界流速  水力梯度  非线性渗流  
收稿时间:2017-04-10

Experimental study of non-linear water flow through unconsolidated porous media under condition of high hydraulic gradient
YANG Bin,XU Zeng-he,YANG Tian-hong,YANG Xin,SHI Wen-hao.Experimental study of non-linear water flow through unconsolidated porous media under condition of high hydraulic gradient[J].Rock and Soil Mechanics,2018,39(11):4017-4024.
Authors:YANG Bin  XU Zeng-he  YANG Tian-hong  YANG Xin  SHI Wen-hao
Institution:1. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, Liaoning 110819, China; 2. Center of Rock Instability and Seismicity Research, School of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning 110819, China
Abstract:Hydrogeological conditions of the coal mining are becoming increasingly complicated, especially, the water pressure in a confined aquifer is getting higher and higher. When the disaster of water-inrush occurs, under the condition of the high hydraulic gradient, it brings the problem of high-velocity non-linear water flow through the water-inrush channel of fractured rock mass. An experimental apparatus was designed to study the behaviour of high-velocity non-linear water flow through the porous media under the condition of the high hydraulic gradient (up to 600). One-dimensional (1D) uniform flow in the homogeneous porous media was experimentally investigated. The porous media was constructed by six types of smooth balls with the diameters ranging from 1 mm to 6 mm which were used to simulate the broken rock mass. Experimental results indicated that, for the porous media with the porosity between 0.44~0.45, when the hydraulic gradient is greater than 145, the process of water flow through the porous media could be divided into three stages: the linear laminar flow, nonlinear laminar flow and turbulence by analyzing the curve of hydraulic gradient and velocity, the curve of hydraulic gradient and Reynolds number. Moreover, the obtained critical flow velocity of the transition from linear laminar flow to non-linear laminar flow is 0.23~0.78 cm/s, the critical hydraulic gradient is 3~8. While the critical flow velocity of the transition from laminar flow to turbulent is 1.6~4.8 cm/s, the critical hydraulic gradient is 90~145. As the particle size increases, the critical flow velocity increases gradually, but the critical hydraulic gradient decreases. The results also show that the permeability is a linear positive correlation with the square of the particle size as well as the non-Darcy flow influence coefficient with the reciprocal of particle size. Moreover, with the increase of permeability, the non-Darcy flow influence coefficient decreases exponentially. Finally, the conclusions can provide some significant references for the problems of water-inrush in high water-pressure confined aquifers in practical engineering and the theoretical study of non-linear seepage flow through the porous media.
Keywords:porous media  particle diameter  critical velocity  hydraulic gradient  non-linear flow  
本文献已被 CNKI 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号