首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fast radio imaging of Jupiter's magnetosphere at low-frequencies with LOFAR
Authors:P Zarka  
Institution:

LESIA, CNRS/Observatoire de Paris, 5 Place J. Janssen, 92195 Meudon, France

Abstract:Jupiter emits intense decameter (DAM) radio waves, detectable from the ground in the range not, vert, similar10–40 MHz. They are produced by energetic electron precipitations in its auroral regions (auroral-DAM), as well as near the magnetic footprints of the Galilean satellite Io (Io-DAM). Radio imaging of these decameter emissions with arcsecond angular resolution and millisecond time resolution should provide:
(1) an improved mapping of the surface planetary magnetic field, via imaging of instantaneous cyclotron sources of highest frequency;

(2) measurements of the beaming angle of the radiation relative to the local magnetic field, as a function of frequency;

(3) detailed information on the Io–Jupiter electrodynamic interaction, in particular the lead angle between the Io flux tube and the radio emitting field line;

(4) direct information on the origin of the sporadic drifting decameter S-bursts, thought to be electron bunches propagating along magnetic field lines, and possibly revealing electric potential drops along these field lines;

(5) direct observation of DAM emission possibly related to the Ganymede–Jupiter, Europa–Jupiter and/or Callisto–Jupiter interactions, and their energetics;

(6) information on the magnetospheric dynamics, via correlation of radio images with ultraviolet and infrared images of the aurora as well as of the Galilean satellite footprints, and study of their temporal variations;

(7) an improved mapping of the Jovian plasma environment (especially the Io torus) via the propagation effects that it induces on the radio waves propagating through it (Faraday rotation, diffraction fringes, etc.);

(8) possibly on the long-term a better accuracy on the determination of Jupiter's rotation period.

Fast imaging should be permitted by the very high intensity of Jovian decameter bursts. LOFAR's capability to measure the full polarization of the incoming waves will be exploited. The main limitation will come from the maximum angular resolution reachable. We discuss several approaches for bringing it close to the value of not, vert, similar1 at 30–40 MHz, as required for the above studies.

Keywords: Jupiter; Magnetosphere; Radio emission; Radio astronomy; LOFAR; Solar system; Planetology

Keywords:Jupiter  Magnetosphere  Radio emission  Radio astronomy  LOFAR  Solar system  Planetology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号