首页 | 本学科首页   官方微博 | 高级检索  
     检索      


First lightcurve observations and rotation of minor planet 127 Johanna
Authors:Imre Toth
Institution:

Konkoly Observatory, P.O. Box 67, Budapest H-1525, Hungary

Abstract:Photoelectric observations of the minor planet 127 Johanna were made in the UBV (RI)c photometric system during its apparition in 1991 at the Piszkéstetõ mountain-station of Konkoly Observatory from August to December, when it showed a brightness variation with an amplitude of about 0.2 magnitude. The derived H, G values in the two-parameter magnitude system in V are 8.459 ± 0.013 and 0.114 ± 0.020, respectively. The determined V linear phase coefficient is of 0.036 ± 0.001 (mag/deg). The value of G and the observed values of color indices (U-B), (B-V) confirm that this asteroid belongs to the C taxonomic class as it was previously classified. The estimated effective diameter is between 96 and 118 km if the assumed V geometric albedo is of 0.06 and 0.04, respectively. The available data suggest a pure principal axis rotation mode. The mean synodic rotational period of the asteroid 127 Johanna is 6.94 ± 0.29 h. The uncertainty is due to the changing of aspect geometry. This value of the synodic rotation period means that this asteroid has an intermediate rotation period. The sense of rotation is prograde as indicated by the temporal evolution of the time derivative of the ecliptic longitude of the phase angle bisector as well as with the increasing synodic period of rotation during the same interval (October/November and December in 1991). The composite lightcurves created for short arc time data reveal structures with breakings and linear portions in V; this fact and the Fourier coefficients indicate a probably irregularly shaped body. There are slight indications that the B-V is redder close to the brightness minimum and the V-Rc is redder at the brightness maximum, and the periodic behavior cannot be proved in V-Ic. The less full rotational phase coverage of the observational data is insufficient to construct a shape model. The accurate pole orientation obviously cannot be determined using one opposition lightcurve data only. Further observations are required to get a more accurate knowledge of the physical parameters of this asteroid. For this purpose, a good opportunity to perform observations arose in December 1996, when this asteroid was in opposition at the northernmost declination.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号