首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Retrogression by deep infiltration of meteoric fluids into thrust zones during late-orogenic rapid unroofing
Authors:Barker  Bennett  Boyce  & Fallick
Institution:School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, Southampton, SO14 3ZH, UK (;), Galson Sciences Ltd, 5 Grosvenor House, Melton Road, Oakham, Rutland, LE15 6AX, UK,;Scottish Universities Research and Reactor Centre (SURRC ), East Kilbride, Glasgow, G75 0QF, UK
Abstract:Hypersaline (Na–Ca–Cl) fluids are associated with late‐stage quartz veining and retrogression of garnet, kyanite and other high P–T phases in the vicinity of thrusts and major lithological boundaries in the Scandian nappes of the Troms‐Ofoten region, northern Norway. They record early Devonian fluid infiltration during rapid exhumation in the final stages of Caledonian orogenesis. The δ18O and δD characteristics of these late fluids provide compelling evidence for deep circulation of meteoric fluids. The sub‐greenschist to low greenschist facies retrogression (P=2±1 kbar; T =300–350 °C) suggests infiltration to depths of 7–9 km in a regime of supra‐hydrostatic fluid pressure. Peak metamorphic quartz veins and associated fluids have δD and δ18O characteristics consistent with a metamorphic origin (δD ?47 to ?75; δ18O+8.6 to +17.4). However, late quartz veins and associated fluids show a broad spread of δD from ?42 to ?148, interpreted in terms of meteoric fluid infiltration. Such negative δD values are only recorded in present‐day high‐latitude or high‐altitude settings, and since north Norway was in an equatorial setting (10° S) in the early Devonian, a high‐altitude origin is deduced. By calculation, and by comparison with modern examples, the early Devonian mountains of the north Norwegian Caledonides are interpreted to have had a topography in excess of 5 km. The deep circulation of surface waters is interpreted in terms of topographically driven flow, linked with a hydrothermal system induced by elevated geothermal gradients due to rapid uplift. Whilst the case for deep penetration of surface‐derived fluids has been promoted for Mesozoic and younger mountain belts, this study represents one of the first documented examples for a Palaeozoic orogenic belt. It suggests that many of the fundamental processes operating during the exhumation of mountain belts are similar irrespective of age.
Keywords:meteoric fluid  orogenesis  retrogression  thrusts  veins  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号