首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings
Institution:1. School of Civil Engineering, Tianjin University, Tianjin 300072, China;2. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
Abstract:The synthetic fiber ropes such as the aramid and polyester ones applied to deepwater mooring systems always exhibit obvious time-dependent like creep and recovery behaviors due to the viscoelasticity and viscoplasticity of the materials, which affect not only the modulus evolution of mooring ropes but also the dynamic response and fatigue performance of the taut-wire mooring system. In the present work, the Schapery's theory combined with Owen's one-dimensional rheological model is proposed to describe both viscoelastic and viscoplastic behaviors of the aramid and polyester fiber ropes. In the viscoelastic part, the Prony series is chosen to describe the transient compliance, which is more accurate than other functions especially under complex loadings; in the viscoplastic part, the adopted viscoplastic function is more suitable for the strain hardening behaviors and the stable state of the materials under variable stress levels. Detailed methods for identifying the model parameters are proposed, which can be applied to any component of the fiber rope such as the fiber, yarn, sub-rope and rope. The present model is capable of quantitatively capturing the change-in-length properties of fiber ropes reported by Flory et al., and can be easily incorporated in the commercial software for mooring analysis. In order to examine the feasibility and precision of the model, the viscoelastic and viscoplastic strains are calculated and compared with experimental and other numerical simulation results. It is observed that there is a good agreement between the predicted and experimental data, and the physically irrational results caused by the key parameter DP previously noticed by Chailleux and Davies can be well eliminated. The present model provides a better tool to further understand the nonlinear behaviors of synthetic fiber ropes for deepwater moorings.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号