首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulation of turning circle by CFD: Analysis of different propeller models and their effect on manoeuvring prediction
Institution:1. Maritime Research Centre, CNR-INSEAN, 00128 Rome, Italy;2. Istituto per le Applicazioni del Calcolo, CNR-IAC, 00161 Rome, Italy
Abstract:Propeller modelling in CFD simulations is a key issue for the correct prediction of hull-propeller interactions, manoeuvring characteristics and the flow field in the stern region of a marine vehicle. From this point of view, actuator disk approaches have proved their reliability and computational efficiency; for these reasons, they are commonly used for the analysis of propulsive performance of a ship. Nevertheless, these models often neglect peculiar physical phenomena which characterise the operating propeller in off-design condition, namely the in-plane loads that are of paramount importance when considering non-standard or unusual propeller/rudder arrangements. In order to emphasize the importance of these components (in particular the propeller lateral force) and the need of a detailed propeller model for the correct prediction of the manoeuvring qualities of a ship, the turning circle manoeuvre of a self-propelled fully appended twin screw tanker-like ship model with a single rudder is simulated by the unsteady RANS solver χnavis developed at CNR-INSEAN; several propeller models able to include the effect of the strong oblique flow component encountered during a manoeuvre have been considered and compared. It is emphasized that, despite these models account for very complex and fundamental physical effects, which would be lost by a traditional actuator disk approach, the increase in computational resources is almost negligible. The accuracy of these models is assessed by comparison with experimental data from free running tests. The main features of the flow field, with particular attention to the vortical structures detached from the hull are presented as well.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号