首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tectonic wedging along the rear of the offshore Taiwan accretionary prism
Authors:Wu-Cheng Chi  Donald L Reed  Greg Moore  Tuan Nguyen  Char-Shine Liu  Neil Lundberg
Institution:a Department of Geology, San Jose State University, San Jose, CA 95192-0102, USA;b Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA;c Department of Geology and Geophysics, SOEST, University of Hawaii, Hawaii, HI 96822, USA;d Institute of Oceanography, National Taiwan University, Taipei, Taiwan, ROC;e Department of Geology, Florida State University, Tallahassee, FL 08544, USA
Abstract:The structural geometry, kinematics and density structure along the rear of the offshore Taiwan accretionary prism were studied using seismic reflection profiling and gravity modeling. Deformation between the offshore prism and forearc basin at the point of incipient collision, and southward into the region of subduction, has been interpreted as a tectonic wedge, similar to those observed along the front of mountain ranges. This tectonic wedge is bounded by an east-dipping roof thrust and a blind, west-dipping floor thrust. An east-dipping sequence of forearc-basin strata in the hanging wall of the roof thrust reaches a thickness in excess of 4 km near the tip of the interpreted tectonic wedge. Section restoration of the roof sequence yields an estimate of 4 km of shortening, which is small compared with that inferred in the collision area to the north, based on the variation in distance between the apex of the prism and the island arc.Previous studies propose that either high-angle normal faulting or backfolding has exhumed the metamorphic rocks along the eastern flank of the Central Range in the collision zone on land. To better constrain the initial crustal configuration, we tested 350 crustal models to fit the free-air gravity anomaly data in the offshore region to study the density structure along the rear of the accretionary prism in the subduction and initial collision zones before the structures become more complex in the collision zone on land. The gravity anomaly, observed in the region of subduction (20.2°N), can be modeled with the arc basement forming a trenchward-dipping backstop that is overlain by materials with densities in the range of sedimentary rocks. Near the point of incipient collision (20.9°N), however, the free-air gravity anomaly over the rear of the prism is approximately 40 mgal higher, compared with the region of subduction, and requires a significant component of high density crustal rocks within the tectonic wedge. These results suggest that the forearc basement may be deformed along the rear of the prism, associated with the onset of collision, but not in the subduction region further to the south.
Keywords:Tectonic wedge  Lithospheric collision  Seismic reflection data  Gravity modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号