首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The importance of autotroph distribution to mussel growth in a well-mixed,temperate estuary
Authors:M H Ruckelshaus  R C Wissmar  C A Simenstad
Institution:1. Department of Botany, KB-15, University of Washington, 98195, Seattle, Washington
2. Fisheries Research Institute, WH-10, University of Washington, 98195, Seattle, Washington
Abstract:In this study, we explored the extent to which secondary production in a well-mixed estuary reflects local differences in biotic and physical characteristics of habitats, or larger-scale, estuary-wide characteristics governed by a freshwater-marine gradient. We addressed the following questions: To what extent do organic components of seston within habitats in an estuary reflect distributions of local autotrophs and to what extent do estuarine consumers such as sessile filter-feeders, respond to small-scale, local differences in habitat characteristics in a wellmixed estuary? We contrasted habitat quality and consumer growth at four sites within Padilla Bay estuary, Washington, representing the major autotrophic sources of organic carbon in Pacific Northwest estuaries (i.e., phytoplankton, eelgrass (Zostera marina), epibenthic and macro-algal species, and marsh macrophytes.) The natural abundances of stable carbon isotopes {ie898-1} were used to resolve origins of organic carbon in diets of blue mussels (Mytilus edulis), a representative suspension feeder. To assess consumer responses to habitat, quality, we combined measures of sestonic food quantity and quality and physical parameters with in situ determination of mussel growth. We used measures of food quality {ie898-2} and consumer response (growth of transplanted mussels) to integrate the effects of high variability in estuarine physical and biological characteristics on primary and secondary production. Using ANOVA, we detected significant differences in the concentrations of sestonic food, seston composition as indicated by {ie898-3}, and mussel {ie898-4} values and growth rates among the four representative habitats. That significant differences in {ie898-5} values of mussel tissue corresponded to the significant differences in {ie898-6} values of local autotrophs and seston among habitats suggests that mussels in Padilla Bay rely primarily on local sources of carbon for food. Mussel growth throughout, the estuary was significantly correlated with both sestonic {ie898-7} and salinity. We conclude that differences in local seston composition and mussel growth rates reflect in part the heterogeneous, distribution of benthic primary producer habitats in Padilla Bay, despite its well-mixed nature. In addition, local differences in salinity levels, as opposed to the bay-wide freshwater-marine, gradient, explained a significant proportion of the variance in mussel growth within the bay. Our results counter the prediction that seston quality and consumer production are comparable throughout well-mixed estuaries, and suggest that the paradigm of physically and chemically determined gradients in estuarine secondary production needs to be broadened to include local biotic factors as well.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号