首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A model not requiring continuous lithosphere for anomalous high-frequency arrivals from deep-focus South American earthquakes
Authors:JArthur Snoke  ISelwyn Sacks  Hiromu Okada
Institution:Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, D.C. U.S.A.
Abstract:Various workers have constructed models to explain a class of anomalous arrivals at Peruvian and Chilean stations from deep-focus South American earthquakes. These arrivals are shear waves with a later arrival time, a higher frequency content, a longer duration and a lower apparent velocity than direct S. Our models assume that there is a sufficiently sharp discontinuity at the upper interface of the descending lithospheric slab between depths of 80 and 250 km to provide efficient reflection (≈0.1) for S-waves incident from below. The observed travel times require a single S-to-S reflection at this interface if the J-B velocity-depth model is modified to allow for 7% higher velocities down to a depth of 300 km (excluding the crust). The locus of required reflection points correlates well with the upper boundary of the observed seismicity (strike and dip angles within 5°) and Q for the proposed path is consistent with the frequency content of the anomalous arrivals. Thus the existence of these arrivals requires a dipping interface down to about 250 km, but, contrary to the wave-guide model of Isacks and Barazangi, cannot be used to infer a continuous lithospheric slab down to the deep-focus earthquakes (h #62; 500 km).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号