首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of Fe-pumpellyite and its stability relations with epidote
Authors:PETER SCHIFFMAN  J G LIOU
Institution:Department of Earth Sciences, University of California, Riverside, CA 92521; Department of Geology, Stanford University, Stanford, CA 94305
Abstract:Hydrothermal synthesis of Fe-pum-pellyites was conducted using high pressure cold-seal apparatus and solid oxygen buffering techniques at temperatures between 250°C and 550°C and 2.0–9.1 kbar Pfluid. Fe-pumpellyites were synthesized from partially crystalline gel mixtures of compositions: 4CaO - 2.1Al2O3_1.5FeO - 0.3MgO - 6SiO2 (II) and 3CaO - 1.5 Al2O3 - 2.7FeO - 0.3MgO - 6SiO2 (III) in the presence of excess H2O at Pfluid of 5–9.1 Kbar, temperatures between 275°C and 325°C, and fO2 defined by the QFM and HM buffers; for both of these compositions (II and III), the condensed synthetic run products included minor 7Å chlorite ± garnet ± Fe-oxide. The cell dimensions and aggregate refractive index (a= 19.13(2)Å, b= 5.940(4)Å, c= 8.847(5)Å, ±= 97.37(6)±, and n= 1.702(2)) of the pum-pellyite synthesized from the bulk composition II mix are compatible with those of natural pumpellyites containing similar total Fe contents. Attempts at synthesizing Fe-pumpellyites from a Mg-free bulk composition were not successful; these results are consistent with the total absence of natural Mg-free pumpellyites. The higher temperature, higher oxygen fugacity assemblages of the equivalent bulk compositions (II and III) consist of epidote ± minor amounts of chlorite, garnet, quartz, hematite, and magnetite. The results of these synthesis experiments accord with the mineral parageneses observed in low-grade metabasites which imply that Fe-pumpellyites are replaced by epidote with increasing temperature and/or fO2 and that Fe3+ is preferentially partitioned into epidote with respect to coexisting pum-pellyite. In addition, these synthesis experiments indicate that Fe-bearing pumpellyites crystallize at and are stable to lower temperatures than more aluminous pumpellyites—a result also consistent with natural systems.
Keywords:Key-words: epidote  hydrothermal synthesis  low-grade metamorphism  pumpellyite
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号