首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of saturation on rainfall generated landslides in shale along Murree-Kohala road,Pakistan
Authors:Farhan Ali  Khalid Farooq  Hasan Mujtaba  Ahmad Riaz  Ehsan Ulhaq
Institution:1.Faculty of Civil Engineering,University of Engineering and Technology Lahore,Lahore,Pakistan;2.Department of Engineering for Innovation,University of Salento,Lecce,Italy
Abstract:On August 10, 2010 a series of landslides of more than 90,000 m3 occurred along the Muree-Kohala road in the northern area of Pakistan. A study was undertaken to evaluate the likely impacts of percent saturation and bulk density on mobilized shear strength along the basal rupture surface of the landslide. A series of unconfined compression test and unconsolidated undrained triaxial tests were performed on remolded samples of different densities with varied percentages of saturation. The results of these tests suggest that soil cohesion and friction decreases with increasing saturation. The tests also showed that the shear strength parameters tend to increase with increasing dry density; however, all the samples exhibited a noticeable loss of shear strength with increasing degree of saturation, independent of soil density.Limit equilibrium slope stability analyses were performed along the most probable failure planes, based on shear strength parameters corresponding to degrees of saturation, which varied between 30% to about 100%. This resulted in drop of factor of safety from FS = 1.64 down to 0.51 as the degree of saturation approaches unity.These results suggest that the causative factor in triggering the landslide along Murree-Kohala was the partial saturation of the zone that developed the basal rupture plane. As rain infiltrated the slope, the bulk unit weight of the soil increased, while the shear strength along the developing plane of rupture decreased sufficiently to concentrate shear strain when the material became more than 60% saturation (FS < 1.0).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号