首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A late Pleistocene record of aeolian sedimentation in Blanche Cave, Naracoorte, South Australia
Authors:Nicolas Darrnougu  Patrick De Deckker  Kathryn E Fitzsimmons  Marc D Norman  Liz Reed  Sander van der Kaars  Stewart Fallon
Institution:aResearch School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia;bSchool of Biological Sciences, The Flinders University of South Australia, GPO Box 2100, Adelaide SA, 5001, Australia;cCentre for Palynology and Palaeoecology, School of Geography and Environmental Science, Monash University, Vic. 3800, Australia
Abstract:We provide geochemical analyses and grain size data for a clearly layered, 80 cm thick sedimentary deposit close to a roof collapse in Blanche Cave near Naracoorte in SE South Australia. This deposit contains aeolian material deposited between not, vert, similar40 ka and 14 ka cal BP and which yields airborne sediments spanning the Last Glacial Maximum, a period of time with little information for the Australian continent. The deposit also contains abundant vertebrate fossil material derived from owl pellets, accumulation and pitfall entrapment. Below the studied profile, large vertebrate remains are found but are not discussed here. No Holocene sedimentation occurred at the site examined in the cave, and the top of the sequence is capped with a layer that has been anthropologically disturbed and contains exotic Pinus pollen. Chronologies of the deposit were obtained using two dating techniques: single stage accelerator mass spectrometer (SSAMS) 14C analysis of 23 charcoal samples and optically stimulated luminescence (OSL) dating of quartz from 6 sediment samples. The 14C chronology is preferred to describe the history of the deposits since the OSL chronology, which consistently overestimates the associated radiocarbon dates, may be inaccurate due to complexities in calculating dose rates, and may in addition represent the timing of sediment deposition through the cave opening rather than sediment transport to the deposit site. Morphological analysis of single quartz grains and grain size analysis indicate different provenance that is confirmed through the geochemical analyses of bulk sediment. Major elements were measured by X-ray Fluorescence (XRF), trace and rare earth elements by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA ICP-MS), and Neodymium isotopic ratios were obtained using a Thermal Ionisation Mass Spectrometer (TIMS).Our results indicate that the aeolian material deposited in Blanche Cave over the 40–14 ka cal BP period originated from different sources across South Australia, although Nd isotopes clearly indicate a close association with sediments of the Kanmantoo Group outcropping along the eastern portion of the Mount Lofty Ranges and the Padthaway Ridge further south, both being located to the NW and NNW of the cave. During the latter part of Marine Isotope Stage 3, conditions were wetter and windblown sediment came from the coastal region just north and south of the Coorong Lagoon, with winds originating from the north-northwest. At that time, woody taxa appear to have vegetated the landscape. During the drier phases, especially the Last Glacial Maximum, sediment came from further inland, thus suggesting a different predominant wind direction, more from the northwest. The deglaciation saw material originating from a more northerly direction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号