首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ore geochemistry,zircon mineralogy,and genesis of the Sakharjok Y-Zr deposit,Kola Peninsula,Russia
Authors:D R Zozulya  L M Lyalina  N Eby  Ye E Savchenko
Institution:1.Geological Institute, Kola Science Center,Russian Academy of Sciences,Apatity, Murmanks oblast,Russia;2.Department of Environmental, Earth, and Atmospheric Sciences,the University of Massachusetts Lowell,Lowell,USA
Abstract:The Sakharjok Y-Zr deposit in Kola Peninsula is related to the fissure alkaline intrusion of the same name. The intrusion ∼7 km in extent and 4–5 km2 in area of its exposed part is composed of Neoarchean (2.68–2.61 Ma) alkali and nepheline syenites, which cut through the Archean alkali granite and gneissic granodiorite. Mineralization is localized in the nepheline syenite body as linear zones 200–1350 m in extent and 3–30 m in thickness, which strike conformably to primary magmatic banding and trachytoid texture of nepheline syenite. The ore is similar to the host rocks in petrography and chemistry and only differs from them in enrichment in zircon, britholite-(Y), and pyrochlore. Judging from geochemical attributes (high HSFE and some incompatible element contents (1000–5000 ppm Zr, 200–600 ppm Nb, 100–500 ppm Y, 0.1–0.3 wt % REE, 400–900 ppm Rb), REE pattern, Th/U, Y/Nb, and Yb/Ta ratios), nepheline syenite was derived from an enriched mantle source similar to that of contemporary OIB and was formed as an evolved product of long-term fractional crystallization of primary alkali basaltic melt. The ore concentrations are caused by unique composition of nepheline syenite magma (high Zr, Y, REE, Nb contents), which underwent subsequent intrachamber fractionation. Mineralogical features of zircon-the main ore mineral—demonstrate its long multistage crystallization. The inner zones of prismatic crystals with high ZrO2/HfO2 ratio (90, on average) grew during early magmatic stage at a temperature of 900–850°C. The inner zones of dipyramidal crystals with average ZrO2/HfO2 = 63 formed during late magmatic stage at a temperature of ∼500°C. The zircon pertaining to the postmagmatic hydrothermal stage is distinguished by the lowest ZrO2/HfO2 ratio (29, on average), porous fabric, abundant inclusions, and crystallization temperature below 500°C. The progressive decrease in ZrO2/HfO2 ratio was caused by evolution of melt and postmagmatic solution. The metamorphic zircon rims relics of earlier crystals and occurs as individual rhythmically zoned grains with an averaged ZrO2/HfO2 ratio (45, on average) similar to that of the bulk ore composition. The metamorphic zircon is depleted in uranium in comparison with magmatic zircon, owing to selective removal of U by aqueous metamorphic solutions. Zircon from the Sakharjok deposit is characterized by low concentrations of detrimental impurities, in particular, contains only 10–90 ppm U and 10–80 ppm Th, and thus can be used in various fields of application.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号