首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temporal variation in the lavas of Mayon volcano, Philippines
Authors:Christopher G Newhall  
Abstract:Chemical and petrographic analyses of 51 sequential lava flows from the central vent of Mayon volcano show cyclical variation. In the two most recent cycles, from 1800 to 1876 and from 1881 to the present, one to three basaltic flows are followed by six to ten andesitic flows. Modal and whole-rock chemical parameters show the most regular cyclical variation; calculated groundmass chemical parameters vary less regularly. There is also a long-term trend, over approximately 1700 years of exposed section, toward more basic compositions.The cyclical variation in modes and the chemical composition of the lavas apparently results from periodic influxes of basaltic magma from depth into a shallow magma system. Fractional crystallization of olivine, augite, hypersthene, calcic plagioclase, magnetite and pargasitic hornblende produces successively more andesitic lavas until the next influx of basaltic magma. Differentiation in a deep zone of magma generation is not excluded by the data, but is more likely responsible for the overall change toward more basic compositions than for the cyclical variation.Three points in a cycle — the beginning of basaltic lavas, the beginning of andesitic lavas and a leveling-off of SiO2, K2 O and K2O/Na2O values — correspond roughly to the beginning of frequent effusive eruptions (with or without an early Plinian eruption), frequent weak to moderately explosive (Strombolian) eruptions, and less frequent explosive (Vulcanian) eruptions, respectively. Recognition of the current stage in a cycle can give a qualitative indication of the nature of forthcoming eruptions. Changes in several specific parameters may precede basaltic lavas and allow early detection of basaltic influxes. These include minima in the glass inclusion/plagioclase phenocryst and phenocryst/groundmass ratios, vesicularity and groundmass TiO2, a decrease in hypersthene phenocrysts, and constant values for the whole-rock K2O/Na2O ratio. The Mayon area is densely populated, making prediction of eruption type important for safety and land-use planning.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号