首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A simultaneous perturbation stochastic approximation algorithm for coupled well placement and control optimization under geologic uncertainty
Authors:Lianlin Li  Behnam Jafarpour  M Reza Mohammad-Khaninezhad
Institution:1. Texas A&M University, College Station, TX, 77843, USA
2. University of Southern California, 925 Bloom Walk, HED 313, Los Angeles, CA, 90089, USA
Abstract:Development of subsurface energy and environmental resources can be improved by tuning important decision variables such as well locations and operating rates to optimize a desired performance metric. Optimal well locations in a discretized reservoir model are typically identified by solving an integer programming problem while identification of optimal well settings (controls) is formulated as a continuous optimization problem. In general, however, the decision variables in field development optimization can include many design parameters such as the number, type, location, short-term and long-term operational settings (controls), and drilling schedule of the wells. In addition to the large number of decision variables, field optimization problems are further complicated by the existing technical and physical constraints as well as the uncertainty in describing heterogeneous properties of geologic formations. In this paper, we consider simultaneous optimization of well locations and dynamic rate allocations under geologic uncertainty using a variant of the simultaneous perturbation and stochastic approximation (SPSA). In addition, by taking advantage of the robustness of SPSA against errors in calculating the cost function, we develop an efficient field development optimization under geologic uncertainty, where an ensemble of models are used to describe important flow and transport reservoir properties (e.g., permeability and porosity). We use several numerical experiments, including a channel layer of the SPE10 model and the three-dimensional PUNQ-S3 reservoir, to illustrate the performance improvement that can be achieved by solving a combined well placement and control optimization using the SPSA algorithm under known and uncertain reservoir model assumptions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号