首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A network flow model for the genesis and migration of gas phase
Authors:Koukung Alex Chang  W Brent Lindquist
Institution:1. Department of Applied Mathematics, National Pingtung University of Education, Pingtung, Taiwan, 90003, Republic of China
2. Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794-3600, USA
Abstract:We present a network flow model to compute transport, through a pore network, of a compositional fluid consisting of water with a dissolved hydrocarbon gas. The model captures single-phase flow (below local bubble point conditions) as well as the genesis and migration of the gas phase when bubble point conditions are achieved locally. Constant temperature computational tests were run on simulated 2D and 3D micro-networks near bubble point pressure conditions. In the 2D simulations which employed a homogeneous network, negligible capillary pressure, and linear relative permeability relations, the observed concentration of CO2 dissolved in the liquid phase throughout the medium was linearly related to the liquid pressure. In the case of no gravity, the saturation of the gas phase throughout the medium was also linearly related to the liquid pressure; under gravity, the relationship became nonlinear in regions where buoyancy forces were significant. The 3D heterogeneous network model had nonnegligible capillary pressure and nonlinear relative permeability functions. While 100 % of the CO2 entered the 3D network dissolved in the liquid phase, 25 % of the void space was occupied by gas phase and 47 % of the CO2 exiting the outlet face did so via the gaseous phase after 500 s of simulation time.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号