首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrodynamical simulations of cluster formation with central AGN heating
Authors:D Sijacki  V Springel
Institution:Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85740 Garching bei München, Germany
Abstract:We analyse a hydrodynamical simulation model for the recurrent heating of the central intra-cluster medium (ICM) by active galactic nuclei (AGN). Besides the self-gravity of the dark matter and gas components, our approach includes the radiative cooling and photoheating of the gas, as well as a subresolution multiphase model for star formation and supernova feedback. Additionally, we incorporate a periodic heating mechanism in the form of hot, buoyant bubbles, injected into the intragalactic medium (IGM) during the active phases of the accreting central AGN. We use simulations of isolated cluster haloes of different masses to study the bubble dynamics and heat transport into the IGM. We also apply our model to self-consistent cosmological simulations of the formation of galaxy clusters with a range of masses. Our numerical schemes explore a variety of different assumptions for the spatial configuration of AGN-driven bubbles, for their duty cycles and for the energy injection mechanism, in order to obtain better constraints on the underlying physical picture. We argue that AGN heating can substantially affect the properties of both the stellar and gaseous components of clusters of galaxies. Most importantly, it alters the properties of the central dominant (cD) galaxy by reducing the mass deposition rate of freshly cooled gas out of the ICM, thereby offering an energetically plausible solution to the cooling-flow problem. At the same time, this leads to reduced or eliminated star formation in the central cD galaxy, giving it red stellar colours as observed.
Keywords:methods: numerical  galaxies: clusters: general  cooling flows  cosmology: theory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号