首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An improved dynamic core for a non-hydrostatic model system on the Yin-Yang grid
Authors:Xiaohan Li  Xindong Peng  Xingliang Li
Institution:1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081
2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081;Center of Numerical Weather Prediction, China Meteorological Administration, Beijing 100081
Abstract:A 3D dynamic core of the non-hydrostatic model GRAPES (Global/Regional Assimilation and Prediction System) is developed on the Yin-Yang grid to address the polar problem and to enhance the computational efficiency. Three-dimensional Coriolis forcing is introduced to the new core, and full representation of the Coriolis forcing makes it straightforward to share code between the Yin and Yang subdomains. Similar to that in the original GRAPES model, a semi-implicit semi-Lagrangian scheme is adopted for temporal integration and advection with additional arrangement for cross-boundary transport. Under a non-centered second-order temporal and spatial discretization, the dry nonhydrostatic frame is summarized as the solution of an elliptical problem. The resulting Helmholtz equation is solved with the Generalized Conjugate Residual solver in cooperation with the classic Schwarz method. Even though the coefficients of the equation are quite different from those in the original model, the computational procedure of the new core is just the same. The bi-cubic Lagrangian interpolation serves to provide Dirichlet-type boundary conditions with data transfer between the subdomains. The dry core is evaluated with several benchmark test cases, and all the tests display reasonable numerical stability and computing performance. Persistency of the balanced flow and development of both the mountain-induced Rossby wave and Rossby-Haurwitz wave confirms the appropriate installation of the 3D Coriolis terms in the semi-implicit semi-Lagrangian dynamic core on the Yin-Yang grid.
Keywords:Yin-Yang grid  semi-implicit semi-Lagrangian  nonhydrostatic  dynamic core
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号