首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Properties of superresonant systems of spherical scatterers
Authors:Tolstoy  I
Institution:Knockvennie, Scotland, UK;
Abstract:Systems of identical precisely spaced bubbles or similar monopole scatterers in water-e.g., inflated balloons or thin-walled shells-insonified at frequenciesomega_{SR}dose to their fundamental radial resonanceomega_{0}(bubble) frequency may themselves display resonance modes or superresonances (SR's) 1]. Ordinary single-bubble resonances magnify the local free-field pressure amplitudep_{1}by a factor(ka)^{-1},abeing the radius andkthe wavenumber in water: for air bubbles or balloons in water, this factor is of the order of 70. Under SR conditions each member of the system amplifies the local free-field amplitude by a further factor of order(ka)^{-1}. Depending upon geometry and other constraints, the pressure fieldP_{SR}on the surface and in the interior of each scatterer will then be in the range of10^{3}p_{1}to5 times 10^{3} p_{1}. This paper investigates the sensitivity of this phenomenon to small departures from the ideal model. In particular, it examines the effect of small differences in scatter positioning and volumes in the context of an SR system consisting of two bubbles/balloons close to the boundary of a thin elastic plate overlying a fluid half-space. It is found that, to observe the SR phenomenon, radii and positions should be controlled to within approximately 1/2 percent.P_{SR}is also sensitive to the angle of incidence of the plane wave train. For the simple system examined here, this sensitivity is considerable for either flexural wave trains or volume acoustic waves incident upon the bubble/ balloon pair (doublet). Practical uses of the phenomenon may range from the design of passive high-Qacoustical filter/amplifiers and acoustical lenses to improved source efficiencies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号