首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Integrated land-use systems: Assessment of promising agroforest and alternative land-use practices to enhance carbon conservation and sequestration
Authors:Robert K Dixon  Jack K Winjum  Kenneth J Andrasko  Jeffrey J Lee  Paul E Schroeder
Institution:(1) U.S. EPA Environmental Research Laboratory, 97333 Corvallis, OR, USA;(2) U.S. EPA Environmental Research Laboratory, National Council for Air and Stream Improvement, 97333 Corvallis, OR, USA;(3) Climate Change Division, U.S. EPA, Office of Policy Analysis, 20460 Washington, DC, USA;(4) U.S. EPA Environmental Research Laboratory, U.S. EPA, 97333 Corvallis, OR, USA;(5) U.S. EPA Environmental Research Laboratory, Mantech Environmental Technology, Inc., 97333 Corvallis, OR, USA
Abstract:Degraded or sub-standard soils and marginal lands occupy a significant proportion of boreal, temperate and tropical biomes. Management of these lands with a wide range of existing, site-specific, integrated, agroforest systems represents a significant global opportunity to reduce the accumulation of greenhouse gases in the atmosphere. Establishment of extensive agricultural, agroforest, and alternative land-use systems on marginal or degraded lands could sequester 0.82–2.2 Pg carbon (C) per year, globally, over a 50-year time-frame. Moreover, slowing soil degradation by alternative grassland management and by impeding desertification could conserve up to 0.5–1.5 Pg C annually. A global analysis of biologic and economic data from 94 nations representing diverse climatic and edaphic conditions reveals a range of integrated land-use systems which could be used to establish and manage vegetation on marginal or degraded lands. Promising land-use systems and practices identified to conserve and temporarily store C include agroforestry systems, fuelwood and fiber plantations, bioreserves, intercropping systems, and shelterbelts/windbreaks. For example, successful establishment of low-intensity agroforestry systems can store up to 70 Mg C/ha in boreal, temperate and tropical ecoregions. The mean initial cost of soil rehabilitation and revegetation ranges from $500–3,000/ha for the 94 nations surveyed. Natural regeneration of woody vegetation or agro-afforestation establishment costs were less than $1000/ha in temperate and tropical regions. The costs of C sequestration in soil and vegetation systems range from $1-69/Mg C, which compares favorably with other options to reduce greenhouse gas emissions to the atmosphere. Although agroforestry system projects were recently established to conserve and sequester C in Guatemala and Malaysia, constraints to wide-spread implementation include social conditions (demographic factors, land tenure issues, market conditions, lack of infrastructure), economic obstacles (difficulty of demonstrating benefits of alternative systems, capital requirements, lack of financial incentives) and, ecologic considerations (limited knowledge of impacts and sustainability of some systems).The information in this document has been funded by the U.S. Environmental Protection Agency. It has been subject to the Agency's peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement for use.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号