首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite,South Africa
Authors:Peter Deines  JJ Gurney  JW Harris
Institution:Department of Geosciences, The Pennsylvania State University, University Park, PA 16802 USA;Geochemistry Department, University of Cape Town, Rondebosch 7700, South Africa;Department of Applied Geology, University of Strathclyde, Glasgow G1 1X3 USA
Abstract:The carbon isotopic composition of 66 inclusion-containing diamonds from the Premier kimberlite, South Africa, 93 inclusion-containing diamonds and four diamonds of two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa was measured. The data suggest a relationship between the carbon isotopic composition of the diamonds and the chemical composition of the associated silicates. For both kimberlites similar trends are noted for diamonds containing peridotite-suite inclusions (P-type) and for diamonds containing eclogite-suite inclusions (E-type): Higher δ13C P-type diamonds tend to have inclusions lower in SiO2 (ol), Al2O3 (opx, gt), Cr2O3, MgO, Mg(Mg + Fe) (ol, opx, gt) and higher in FeO (ol, opx, gt) and CaO (gt). Higher δ13C E-type diamonds tend to have inclusions lower in SiO2, Al2O3 (gt, cpx), MgO, Mg(Mg + Fe) (gt), Na2O, K2O, TiO2 (cpx) and higher in CaO, Ca(Ca + Mg) (gt, cpx).Consideration of a number of different models that have been proposed for the genesis of kimberlites, their xenoliths and diamonds shows that they are all consistent with the conclusion that in the mantle, regions exist that are characterized by different mean carbon isotopic compositions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号