首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Circulation and thermal structure in Lake Huron and Georgian Bay: Application of a nested-grid hydrodynamic model
Institution:1. School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK;2. Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
Abstract:A nested-grid hydrodynamic modelling system is used to study circulation and temperature distributions in Lake Huron (LH) and adjacent areas. This nested system is based on the three-dimensional, primitive-equation z-level ocean model. The nested system consists of two sub-components: a coarse-resolution outer model covering LH and Georgian Bay (GB) with a horizontal resolution of roughly 2.5 km, and the fine-resolution inner model covering eastern LH and northwestern GB with a horizontal resolution of roughly 900 m. Both the outer and inner models have 30 z-levels in the vertical. To assess the model performance, we simulate the three-dimensional circulation and temperature distributions of LH and GB in 1974–1975 and compare the model results with observations made in the lake. We demonstrate that outer model of the nested system simulates reasonably well the large-scale circulation and seasonal evolution of thermal stratifications in LH and GB, and the inner model produces reasonably well the three-dimensional flow and thermal structure over the coastal boundary layer close to the eastern shore of the lake.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号