首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Contribution of Asteroid Dust to the Interplanetary Dust Cloud: The Impact of ULYSSES Results on the Understanding of Dust Production in the Asteroid Belt and of the Formation of the IRAS Dust Bands
Authors:Ingrid Mann  Eberhard Grün  Martin Wilck
Institution:aMax-Planck-Institut für Aeronomie, Postfach 20, D 37189, Katlenburg-Lindau, Federal Republic of Germanyf1;bMax-Planck-Institut für Kernphysik, Postfach 103980, D 69029, Heidelberg 1, Federal Republic of Germany;cMax-Planck-Institut für Aeronomie, Postfach 20, D 37189, Katlenburg-Lindau, Federal Republic of Germany
Abstract:Investigations of the zodiacal dust cloud give evidence for a significant contribution of asteroidal dust to the interplanetary dust cloud, a result which can now be compared to measurements of the ULYSSES dust detector during its passage of the asteroid belt. Especially we discuss the ULYSSES data with respect to the IRAS dust bands and consider geometric selection effects for the detector. From calculations of radiation pressure forces, we conclude that particles in the IRAS dust bands with massesm≥ 10−12g will stay in bound orbits after their release from asteroid fragmentation. This is already in the mass range (10−16–10−7g) of particles detectable with the dust detector onboard ULYSSES. The absence of these particles in the ULYSSES data cannot be explained exclusively in terms of their small detection probability. Thus we conclude that the size distribution of particles in the IRAS dust bands most probably cannot be continued to the submicrometer range. Concerning the global structure of the inner zodiacal cloud (i.e., about solar distancer< 3.5 AU) the ULYSSES data are not inconsistent with present models. Recent estimates of the total mass of the interplanetary cloud require a dust production rate of about 1014g/year of which a significant amount is assumed to result from the asteroids. Our estimate for the production of dust particles in an IRAS dust band, based on the assumption that the dust band results from a single destruction of an asteroid of 100 km size, yields a production rate of 1010g/year. Other models of the IRAS dust bands suggest production rates up to 1012g/year and also cannot provide a significant source of the dust cloud.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号