首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effects of longitudinal variations in valley geometry and wood load on flood response
Authors:Sarah Hinshaw  Ellen Wohl  Dany Davis
Institution:1. Department of Geosciences, Colorado State University, Fort Collins, CO, 80523-1482 USA;2. New York City Department of Environmental Protection, Flushing, NY, 11373 USA
Abstract:We use field measurements and airborne LiDAR data to quantify the potential effects of valley geometry and large wood on channel erosional and depositional response to a large flood (estimated 150-year recurrence interval) in 2011 along a mountain stream. Topographic data along 3 km of Biscuit Brook in the Catskill Mountains, New York, USA reveal repeated downstream alternations between steep, narrow bedrock reaches and alluvial reaches that retain large wood, with wood loads as high as 1261 m3 ha?1. We hypothesized that, within alluvial reaches, geomorphic response to the flood, in the form of changes in bed elevation, net volume of sediment eroded or aggraded, and grain size, correlates with wood load. We hypothesized that greater wood load corresponds to lower modelled average velocity and less channel-bed erosion during the flood, and finer median bed grain size and a lower gradation coefficient of bed sediment. The results partly support this hypothesis. Wood results in lower reach-average modelled velocity for the 2011 flood, but the magnitude of change in channel-bed elevation after the 2011 flood among alluvial and bedrock reaches does not correlate with wood load. Wood load does correlate with changes in sediment volume and bed substrate, with finer grain size and smaller sediment gradation in reaches with more wood. The proportion of wood in jams is a stronger predictor of bed grain-size characteristics than is total wood load. We also see evidence of a threshold: greater wood load correlates with channel aggradation at wood loads exceeding approximately 200 m3 ha?1. In this mountain stream, abundant large wood in channel reaches with alluvial substrate creates lower velocity that results in finer bed material and, when wood load exceeds a threshold, reach scale increases in aggradation. This suggests that reintroducing small amounts of wood or one logjam for river restoration will have limited geomorphic effects. © 2020 John Wiley & Sons, Ltd.
Keywords:large wood  logjam  bedrock channel  sediment storage
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号