首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Refinement of the channel response system by considering time-varying parameters for flood prediction
Authors:Pin-Chun Huang  Kwan Tun Lee
Institution:1. Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan;2. Department of River and Harbor Engineering, National Taiwan Ocean University, Keelung, Taiwan
Abstract:Impulse response functions derived from different types of flood wave equations (simplified shallow water equations) are continuously developed to conduct the linear channel routing (LCR), which is based on the linearized Saint Venant equation and has been widely applied to avoid any possibility of numerical instability. The impulse response function proposed by Dooge, Napiórkowski, and Strupczewski (1987) and derived from the dynamic wave equation with complete force terms has been acknowledged as a classic work to establish a good physical interpretation for the LCR model; however, the flexibility of altering the shape of impulse response still needs to be improved. Based on the concept of this work, this study intends to introduce the time-varying parameters in the model, so the values of parameters can be adjusted according to the inflow condition, flood stage, and the cross-sectional shape. Moreover, an integrated routing procedure is proposed to formulate the impulse response function for lateral-flow inputs and then to connect multiple inputs from subwatersheds or alongside the main channel with the impulse response function of each channel segment to reflect the spatial variation of hydraulic characteristics among different segments. In the discussion of this article, the impulse response function is analysed to show its sensitivity to hydraulic variables with spatial and temporary variations. Flood-event simulations of a studied watershed are also provided to verify the applicability of the proposed channel routing system.
Keywords:linear channel routing  modified impulse response function  time-varying parameters
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号