首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of climate-related variability in storage on streamwater solute concentrations and fluxes in a small forested watershed in the Southeastern United States
Authors:Brent T Aulenbach
Institution:U.S. Geological Survey, South Atlantic Water Science Center, 1770 Corporate Dr., Ste. 500, Norcross, GA, 30093 United States
Abstract:Streamwater quality can be affected by climate-related variability in hydrologic state, which controls flow paths and affects biogeochemical processes. Thirty-one years of input/output solute fluxes at Panola Mountain Research Watershed, a small, forested, seasonally water-limited watershed near Atlanta, Georgia, were used to quantify the effects of climatic-related variability in storage on streamwater solute concentrations and fluxes. Streamwater fluxes were estimated for ten solutes from weekly and event sample concentrations using regression-based methods. The most pertinent storage attribute (current or antecedent watershed, shallow, and deep storage) for each solute was determined by fitting separate concentration relationships. The concentration-discharge relationships varied more for reactive solutes such as potassium, sulfate, and DOC and less for weathering products (base cations and dissolved silica) and conservative chloride. Many solutes exhibited higher concentrations when storage levels were lower or wetting up, which was likely the result of the concentrating effects of evapotranspiration and/or the buildup and flushing of weathering products associated with longer residence times. The impacts of storage modeling on annual fluxes varied by solute, ranging from about 5% (magnesium) to 52% (nitrate) as relative standard deviations, and sufficiently removed climate-related patterns observed in streamwater concentrations. Sulfate was particularly mobilized following growing season droughts but only if deep storage was sufficiently recharged, possibly indicating that sulfides in the deep storage pool were oxidized to sulfate during droughts and mobilized when re-wetted. The lack of streamwater sulfate response to 61% declines in atmospheric deposition indicates the importance of watershed biogeochemical processes on controls of streamwater export of sulfate. The approach of explicitly incorporating storage in the streamwater concentration modeling elucidated the effects of climate on streamwater water-quality and may provide insight into the effects of climatic change on future fluxes.
Keywords:atmospheric deposition  biogeochemistry  climatic effects  streamwater fluxes  streamwater loads  stream concentration-discharge relationships  watershed mass balance  water quality
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号