首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inferring sediment transfers and functional connectivity of rivers from repeat topographic surveys
Authors:Mikel Calle  Javier Calle  Petteri Alho  Gerardo Benito
Institution:1. National Museum of Natural Sciences, Spanish Research Council (CSIC), Calle de Serrano 115 bis, 28006 Madrid, Spain;2. National Distance Education University (UNED), Calle de Bravo Murillo 38, 28015 Madrid, Spain;3. Department of Geography and Geology, University of Turku, Turku, 20014 Turun yliopisto, Finland
Abstract:High-resolution topographic models have revolutionized monitoring of river changes by comparing sequential river topographic surveys (i.e. change detection). Nevertheless, much more may be obtained from this innovative quantification of changes. In this paper, we enhance the interpretation of geomorphic processes by presenting a new method for understanding of sources and sinks of sediment, river sediment transfers and functional sediment connectivity. Repeat digital elevation models (DEMs) obtained by photogrammetry were used to quantify topographic change after two floods by creating a DEM of difference (DoD) of a 6.5 km-long reach of Rambla de la Viuda stream, an ephemeral gravel-bed river in eastern Spain. The proposed method involved dividing the channel into 10 m-long longitudinal strips that were used to systematically draw boundaries between the erosional and depositional areas of the DoD. The analysis objectively: (i) drew a series of erosional and depositional segments, from 120 to 1360 m in length; (ii) estimated ranges of source-to-storage sediment transport distances, 320–670 m in the upstream and middle reaches and up to 2030 m in the lower reach; and (iii) obtained values of functional connectivity (i.e. the ratio between the sediment exported (erosion) and retained (deposition), ranging from 103 to 10?3). The variability in these three parameters along the river was found to be related to the level of channel disturbance by in-stream mining during the 1990s and 2000s. Additionally, this method indicates that the main process responsible for self-adjustment of the present morphosedimentary conditions is intra-reach erosion of banks and channel beds. Thus, this study proposes a new methodology to characterize morphological change, sediment transfer and connectivity that may serve as environmental indicators of the hydromorphological integrity of rivers with potential application to the European Water Framework Directive. © 2019 John Wiley & Sons, Ltd.
Keywords:functional connectivity  change detection  SfM-MVS  transport distance  hydromorphological assessment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号