首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influence of lithology on channel geometry and bed sediment organization in mountainous hillslope-coupled streams
Authors:Michael Mulugetta Fratkin  Catalina Segura  Sharon Bywater-Reyes
Institution:1. Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR, USA

Water Resources Graduate Program, Oregon State University, Corvallis, OR, USA;2. Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR, USA;3. Department of Earth and Atmospheric Sciences, University of Northern Colorado, Greeley, CO, USA

Abstract:Sediment transport and channel morphology in mountainous hillslope-coupled streams reflect a mixture of hillslope and channel processes. However, the influence of lithology on channel form and adjustment and sediment transport remains poorly understood. Patterns of channel form, grain size, and transport capacity were investigated in two gravel-bed streams with contrasting lithology (basalt and sandstone) in the Oregon Coast Range, USA, in a region in which widespread landslides and debris flows occurred in 1996. This information was used to evaluate threshold channel conditions and channel bed adjustment since 1996. Channel geometry, slope, and valley width were measured or extracted from LiDAR and sediment textures were measured in the surface and subsurface. Similar coarsening patterns in the first few kilometres of both streams indicated strong hillslope influences, but subsequent downstream fining was lithology-dependent. Despite these differences, surface grain size was strongly related to shear stress, such that the ratio of available to critical shear stress for motion of the median surface grain size at bankfull stage was around one over most of the surveyed lengths. This indicated hydraulic sorting of supplied sediment, independent of lithology. We infer a cycle of adjustment to sediment delivered during the 1996 flooding, from threshold conditions, to non-alluvial characteristics, to threshold conditions in both basins. The sandstone basin can also experience complete depletion of the gravel-size alluvium to sand size, leading to bedrock exposure because of high diminution rates. Although debris flows being more frequent in a basalt basin, this system will likely display threshold-like characteristics over a longer period, indicating that the lithologic control on channel adjustment is driven by differences in rock competence that control grain size and available gravel for bed load transport. © 2020 John Wiley & Sons, Ltd.
Keywords:sediment transport capacity  threshold channel  hillslope coupled  gravel-bed river  Oregon coast range
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号