首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using hydrochemistry and environmental isotopes in the assessment of groundwater quality in the Euphrates alluvial aquifer,Syria
Authors:Zuhair Kattan
Institution:1.Department of Geology,Atomic Energy Commission of Syria (AECS),Damascus,Syrian Arab Republic
Abstract:Hydrochemical and environmental isotope methods were used to characterize the groundwater quality in ten wells belonging to the Euphrates alluvial aquifer in Syria, with the aim to assess the origin and dynamic of groundwater salinization in this system. The Euphrates River (ER) water along its entire course in Syria is rather fresh (TDS < 0.5 g/L), and thus, it is suitable for drinking and irrigation purposes. Groundwater salinity progressively increases from north to south, changing from almost freshwater (TDS < 0.6 g/L), with a Ca–Mg and HCO3 type near the Syrian–Turkish border to brackish water (1 < TDS < 3 g/L), with a Ca–Mg or Na–Ca–Mg and SO4–HCO3 type in the vicinity of Al-Raqqa, and hence it can safely be used for irrigation. Downstream Deir-Ezzor the groundwater quality becomes fairly saline to very saline (3 < TDS < 29 g/L), with a Na–Cl type, and therefore it has an absolute hazard (SAR > 5) for irrigation uses. This pattern of chemical evolution, which is also clearly reflected in the variations of groundwater ionic ratios, completely agrees with the thermodynamic simulation results obtained by an experimental evaporation essay of a water sample taken from the ER near Deir-Ezzor. Stable isotopes permit the distinction between three main evaporation processes: under high, intermediate and low humidity conditions. Radioisotopes (3H and 14C) indicate the recent age and renewability of groundwater in this aquifer and confirm that its origin is entirely belonged to the ER water, either by direct bilateral interconnection or by vertical infiltration of the irrigation water totally taken from the ER. Relationships between major ions and δ18O values of the groundwater allow to differentiate between two main enrichment processes: either evaporation only or evaporation plus dissolution, that can explain altogether the development of groundwater salinity in such a dry area.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号