首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Widespread fluid infiltration during metamorphism of the Witwatersrand goldfields: generation of chloritoid and pyrophyllite
Authors:GN PHILLIPS
Institution:Department of Geology, University of the Witwatersrand, Wits, 2050, South Africa
Abstract:Abstract Chloritoid and pyrophyllite occur together in all major goldfields of the Witwatersrand Basin and are widespread in virtually all rock types of the upper Witwatersrand Supergroup, including metaconglomeratic reefs and altered mafic rocks. Both minerals are particularly characteristic of the pelitic horizons intimately associated with reef packages, but they are also developed locally in the regionally persistent metapelites that have basin-wide extent. Pyrophyllite is particularly common in foliated zones, adjacent to quartz veins, and near unconformably overlying auriferous conglomerates. The wide distribution of chloritoid and pyrophyllite in metapelites of the Witwatersrand Basin is attributed to alteration of chlorite-rich shales, rather than to unusual premetamorphic starting materials. This alteration event involved the redistribution of many elements, with up to 40% volume loss, mainly due to removal of silica. Removal of most of the Mg and some Fe accounts for the stabilization of chloritoid and pyrophyllite. Relatively immobile elements included Al, Ti, Nb, Cr, V, P, La and Ce, whereas Si, Fe, Mn, Zn, Co, Ni, Cu, Mg and Ca were lost, and K, Rb and Ba were introduced by an infiltrating fluid. The alteration event is inferred to have been within the chloritoid and pyrophyllite stability field (and thus syn-metamorphic) as bulk chemical changes in metapelites are from chlorite directly towards chloritoid and then pyrophyllite, rather than to lower grade minerals such as kaolinite. Muscovite–chlorite–chloritoid and muscovite–chloritoid–pyrophyllite assemblages are attributed to fluid buffering along appropriate curves, as their production by metamorphism of lower grade mineral mixes is considered unlikely, based on the present bulk rock compositional data. A metamorphic timing for the alteration accounts for the correlation of strongly foliated areas with greater degrees of inferred alteration. The transitions from chlorite to chloritoid to pyrophyllite define zones of increasing alteration. Widespread infiltration as part of peak metamorphism is suggested by the distribution of chloritoid and pyrophyllite, quartz veining and textures. Fluid:rock ratios calculated from a silica budget in one metapelitic horizon exceed 100:1 over many square kilometres. These values need not imply multi-pass fluid flow, as much of the silica migration may be redistribution on a scale of a few metres, from source rocks into veins. Although infiltration during metamorphism may have affected much of the upper Witwatersrand succession, channelized fluid flow within reef packages, along faults and unconformities and in certain metaconglomerates and metapelites is inferred.
Keywords:alteration  chloritoid  gold  infiltration  pelite  pyrophyllite  shale  Witwatersrand
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号