首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Isotopic geochemistry of burial-metamorphosed volcanogenic sediments,Great Valley sequence,northern California
Authors:Robert K Suchecki  Lynton S Land
Institution:Chevron Oil Field Research Company, P.O. Box 446, La Habra, CA 90631 U.S.A.;Department of Geological Sciences, The University of Texas at Austin, Austin TX 78712 U.S.A.
Abstract:Isotopic and mineralogic data from an 8500-m thick section of the Great Valley sequence, northern California, indicate that changes in the δ18O values of authigenic minerals resulted from the conversion of smectite to a 10 Å clay-mineral as temperature increased with burial in the Jurassic- Cretaceous outer-arc basin. The clay-mineral assemblage in mudstone is characterized by a proportional increase of the 10 Å clay-mineral with increasing stratigraphic depth, and by a depletion in the δ18O value of the mixed-layer smectite/10 Å clay-mineral with descending stratigraphic position from +21.9 to + 15.5%. SMOW. Modeling of the oxygen isotopic data from authigenic phases, based on equilibrium fractionation during clay-mineral diagenesis, indicates that δ18O values of calcite in mudstones and of calcite cements in sandstone precipitated along a temperature gradient of about 25°C/km during maximum burial to about 6–7 km. δD values of the mixed-layer smectite/10 Å clay-mineral range between ?69 to ?44%. SMOW. Using temperatures calculated from the oxygen isotopic data, the deuterium and oxygen isotopic data indicate that the smectite underwent late-stage dehydration and probably buffered the composition of formation waters from sea water values to isotopic compositions of δ18O ≈ +8%. SMOW and δD ≈ ?25%. SMOW. The δ13C values of calcite from mudstone and sandstone imply that crystallization of authigenic calcite was linked to organic diagenesis during which dissolved HCOt-3 was continuously enriched in 13C as temperature increased with burial. At the base of the sequence and immediately overlying the ophiolitic basement rocks, several hundred meters of strata were altered by more oxygen-depleted (δ18O ? +4 to +5%.) hydrothermal fluids emanating from the ophiolitic rocks, probably at maximum burial depth.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号