首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Refractory precursor components of Semarkona chondrules and the fractionation of refractory elements among chondrites
Authors:Jeffrey N Grossman  John T Wasson
Institution:Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024, USA
Abstract:Chondrules from the Semarkona (LL3.0) chondrite show refractory and common lithophile fractionation trends similar to those observed among the chondrite groups. It appears that chondrules are mixtures of a small number of pre-existing solid components, and we infer that chondrule precursor materials were related to the nebular components involved in the lithophile element fractionations recognized in ordinary chondrites. Compositional trends among the chondrules can be used to deduce the compositions of these components.We use instrumental neutron activation analysis to measure many (~20) of the lithophile elements in 30 chondrules. The amounts of oxidized iron were calculated from other compositional parameters; concentrations of Si were estimated using mass-balance considerations. The data were corrected for the diluting effects of non-lithophile constituents. Plots of lithophile elements versus a reference refractory element such as Al show that there were two major chondrule silicate precursor components: a refractory, olivine-rich, FeO-free one, and a non-refractory, SiO2-, FeO-rich one.The refractory component probably forms from olivine-enriched condensates formed above the condensation temperature of enstatite. The non-refractory component must have formed from fine-grained materials that were able to equilibrate down to lower nebular temperatures. Chondrite matrix may have had an origin similar to that of the non-refractory material, and constitutes a third lithophile-bearing component that took part in chondrite fractionation processes. The low abundance of refractories and Mg in ordinary and enstatite chondrites was produced by the loss of materials having a higher refractory-element/Mg ratio than that in the refractory component of chondrules.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号