首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase relations in the system NaCl-KCl-H2O II: Differential thermal analysis of the halite liquidus in the NaCl-H2O binary above 450°c
Authors:WD Gunter  I-Ming Chou  Sven Girsperger
Institution:1. Institut fuer Kristallographie und Petrographie, ETH-Zentrum, CH-8092, Switzerland;2. U.S. Geological Survey, 959 National Center, Reston, Virginia, 22092, U.S.A.;3. Present address: Oil Sands Research Dept., Alberta Research Council, 11315-87th Ave, Edmonton, Alberta, T6G 2C2, Canada
Abstract:Thermal analysis of the halite liquidus in the system NaCl-H2O has been conducted for NaCl mole fractions (XNaCl) greater than 0.25 (i.e., > 50 wt. % NaCl) at pressures between 0.3 and 4.1 kb and temperatures greater than 450°C. The position of the liquidus was located by differential thermal analysis (DTA) of cooling scans only, as heating scans did not produce definitive DTA peaks. The dP/dT slope of the liquidus is positive and steep at high pressures, but at high XNaCl, and pressures below 0.5 kb it appears to reverse slope and intersects the three-phase curve (liquid-halite-vapour) at a shallow angle. However, due to the complex nature of the DTA signal when P <- 0.5 kb, there is considerable doubt about exactly what event has been recorded in the experiments conducted at these low pressures.The solubility of halite can be expressed as a function of the mole-fractional-based activity of NaCl in the liquid phase (L) in temperature (T, °K) and pressure (P, bars) In αNaCl(L.T.P) = ?19.884 ? 0.001275T ? 1388T + 3.2305 In (T) ? 0.07574PT Our liquidus data (based on 10 compositions) above 500 bars for these brines were combined with this equation to generate activity coefficients of NaCl which were fit within their experimental uncertainties to the following one parameter Margules equation In γNaCl(L.T.P) = (0.7268 ? 695.7T ? 0.1217PT)(1 ? XNaCl)2. Concentrated solutions of NaCl show negative deviations from ideality which rapidly increase in magnitude with decreasing XNaCl.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号