首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrical resistivity imaging of hydrologic flow through surface coal mine valley fills with comparison to other landforms
Authors:Breeyn M Greer  Thomas J Burbey  Carl E Zipper  Erich T Hester
Institution:1. The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic and State University, Blacksburg, VA, USA;2. Department of Geosciences, Virginia Polytechnic and State University, Blacksburg, VA, USA;3. Department of Crop and Soil Environmental Sciences, Virginia Polytechnic and State University, Blacksburg, VA, USA
Abstract:Surface coal mining has altered land cover, near‐surface geologic structure, and hydrologic processes of large areas in central Appalachia, USA. These alterations are associated with changes in water quality such as elevated total‐dissolved solids, which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent streams is a function of fill construction methods, materials, and age; yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of conducting traditional hydrologic studies in mined landscapes. We used electrical resistivity imaging (ERI) to visualize the subsurface geologic structure and hydrologic flow paths within a valley fill. ERI is a noninvasive geophysical technique that maps spatiotemporal changes in resistivity of the subsurface. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill. Results indicate that ERI can be used to identify subsurface geologic structure and track advancing wetting fronts or preferential flow paths. Our results suggest that the upper portion of the fill contains significant fines, whereas the deeper profile is primarily large rocks and void spaces. Water tended to pond on the surface of compacted areas until it reached preferential flow paths, where it appeared to infiltrate quickly down to >15 m depth in 75 min. ERI applications can improve understanding of how fill construction techniques influence subsurface water movement, and in turn may aid in the development of valley fill construction methods to reduce water quality effects.
Keywords:conductivity  geophysical inverse modeling  preferential flow  stormflow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号