首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The flux of oxygen from the basal surface of gibbsite (α-Al(OH)3) at equilibrium
Authors:Jörgen Rosenqvist
Institution:1 Department of Land, Air, and Water Resources, and Department of Geology, University of California, Davis, Davis, CA 95616 USA
Abstract:Experiments were conducted on gibbsite to determine whether oxygen-isotope exchange rates at hydroxyl bridges (μ2-OH) on the basal sheet exhibit similar reactivity trends as in large aluminum polyoxocations, for which high-quality kinetic data exist. We followed the exchange of 18O from the mineral surface to solution by using a high-surface-area solid that had been enriched to tens of percent in 18O. To establish this high enrichment, we initially react the solid hydrothermally with highly enriched H218O in order to tag all oxygens near the mineral surface, and then back exchange the most reactive oxygens with isotopically normal water. This enrichment procedure isolates 18O into the least-reactive sites, which are presumably μ2-OH on the basal surface. By analogy with aqueous aluminum complexes, including large multimers, the η-OH2 sites exchange within fractions of a second and should be isotopically normal using this procedure.When suspended in isotopically normal electrolyte solutions, we find that the rates of release of 18O from the mineral fall close to the rates of dissolution. The lack of steady isotopic exchange of μ2-OH on gibbsite surfaces contrasts with the aluminum polyoxocations, where the μ2-OH exchange many hundreds of times with bulk water molecules before the molecule dissociates. Additional experiments were conducted in solutions at near-neutral pH to determine the flux of oxygens at conditions near thermodynamic equilibrium. As in more acidic solutions, rates are close to values expected from dissolution of the mineral and there is no evidence for steady exchange of hydroxyl bridges with water molecules in the bulk solution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号