首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low incidence and limited effect of the oyster pathogen dermo (<Emphasis Type="Italic">Perkinsus marinus</Emphasis>) on an artificial reef in Delaware's Inland Bays
Authors:Lindsay R Kendall  John W Ewart  Paul N Ulrich  Adam G Marsh
Institution:(1) Department of Agriculture and Natural Resources, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA;
Abstract:Delaware's Inland Bays comprise a large estuarine system with a restricted access to the Atlantic Ocean (Indian River Inlet). As part of a local oyster stock enhancement and restoration effort, we conducted a survey for the protozoan pathogenPerkinsus marinus (Dermo) in oysters from a newly established reef. Using standardized methods for the polymerase chain reaction (PCR) amplification of the non-transcribed spacer (NTS) region, we were surprised to find no detectable titers of this pathogen in the 30 oysters sampled in the first year of the project. The detection threshold of the PCR coupled with chemiluminescent detection was 30 fgP. marinus NTS DNA. We were able to detect a trace presence of this pathogen in a few hard clams (Mercenaria mercenaria) from the same locale, indicating that aPerkinsus sp. was present in the Inland Bay system. Subsequent monitoring of the reef system using a fluid thioglycollate assay over 3 yr revealed no epizootic outbreaks of this pathogen within the planted oyster population. Two large mortality episodes that did appear in the oyster population were attributable to abiotic conditions and not pathogen exposure. This study emphasizes that all potential sources of mortality in the environment are important to consider when designing oyster seeding projects. In the Delaware Inland Bays,P. marinus does not appear to have a large enough oyster host population to become a significant disease threat at present. Because of the low parasite incidence levels in the Inland Bay system in 2000, the James Farm oyster reef restoration project presents an ideal model system to follow the population dynamics between an oyster-host population and a latent or reservoir pathogen population.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号